Quantitative self-powered electrochromic biosensors.

نویسندگان

  • Miguel Aller Pellitero
  • Anton Guimerà
  • Maria Kitsara
  • Rosa Villa
  • Camille Rubio
  • Boris Lakard
  • Marie-Laure Doche
  • Jean-Yves Hihn
  • F Javier Del Campo
چکیده

Self-powered sensors are analytical devices able to generate their own energy, either from the sample itself or from their surroundings. The conventional approaches rely heavily on silicon-based electronics, which results in increased complexity and cost, and prevents the broader use of these smart systems. Here we show that electrochromic materials can overcome the existing limitations by simplifying device construction and avoiding the need for silicon-based electronics entirely. Electrochromic displays can be built into compact self-powered electrochemical sensors that give quantitative information readable by the naked eye, simply controlling the current path inside them through a combination of specially arranged materials. The concept is validated by a glucose biosensor coupled horizontally to a Prussian blue display designed as a distance-meter proportional to (glucose) concentration. This approach represents a breakthrough for self-powered sensors, and extends the application of electrochromic materials beyond smart windows and displays, into sensing and quantification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative self-powered electrochromic biosensors† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04469g Click here for additional data file.

Self-powered sensors are analytical devices able to generate their own energy, either from the sample itself or from their surroundings. The conventional approaches rely heavily on silicon-based electronics, which results in increased complexity and cost, and prevents the broader use of these smart systems. Here we show that electrochromic materials can overcome the existing limitations by simp...

متن کامل

Self-powered electrochromic display as an example for integrated modules in printed electronics applications

The growing market for flexible electronics devices is asking for reduction of manufacturing process complexity. One way to reduce complexity is to decrease the number of single components of a device by using integrated modules, i.e. device components providing multiple functions. In this article, the concept of a self-powered electrochromic graphics display device is demonstrated. The device ...

متن کامل

Self-powered visual ultraviolet photodetector with Prussian blue electrochromic display.

A novel self-powered ultraviolet (UV) photodetector was successfully constructed through combining Pt-modified TiO2 nanotubes and Prussian blue (PB)-modified ITO, in which the existence of UV could be judged easily by naked eye with the aid of PB for electrochromic display. More importantly, it could also self-recover without UV light illumination.

متن کامل

Self-powered fluorescence display devices based on a fast self-charging/recharging battery (Mg/Prussian blue).

Stimuli-responsive (such as voltage and/or light) fluorescence display systems have attracted particular attention in their promising fields of application. However, there are few examples of self-powered fluorescence display devices. Here we designed and fabricated a self-powered fluorescence display device based on a fast-charging/recharging battery. The specially designed battery was compose...

متن کامل

Integrated smart electrochromic windows for energy saving and storage applications.

A self-powered electrochromic smart window with tunable transmittance driven by dye-sensitized solar cells has been designed, which also acts as a photocharged electrochromic supercapacitor with high areal capacitance and reversible color changes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical science

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2017